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ABSTRACT

The NCTM [6] curriculum states that students should be able to
"compare and contrast the real number system and its various subsystems
with regard to their structural characteristics." In evaluating overall
conformity to the 1989 standard, NCTM [11] requires that "teachers must
value and encourage the use of a variety of tools rather than placing
excessive emphasis on conventional mathematical symbols." Finally, the
Educational Testing Service in PRAXIS II [2] "assess(es) the subject
matter knowledge necessary for a beginning teacher of secondary school
mathematics" to demonstrate competence in "the concept of countability
as related to infinite sets" and this test "conforms to the NCTM
standards" of 1989 and 1991.

In compliance with the above standards and goals, this paper
presents to educators a deeper understanding of the concept of countability
and as to which sets are countable and which are not. Cantor [3]
introduced the diagonalization method to determine whether an infinite set
of real numbers is uncountable. This paper presents a template for
standardizing diagonalization type proofs by borrowing notions of applied
software engineering technology to "store" infinite sets. This template is
applied to a number of specific examples to illustrate the proper
application of the diagonalization argument.

With the abstract use of computational data structures for
describing infinite sets, we present a formal analysis of the template proof
to show that countable sets do not provide adequate information for the
contradiction required by diagonalization proofs. This further elucidates
the associated computer and mathematical theory concepts.
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1. INTRODUCTION

In 1989, the National Council of Teachers of Mathematics
(NCTM) put forth an extensive standard for mathematical curricula and
education in elementary, middle-school, and secondary (pre-college)
courses. The end goal of this mathematics educational process is to
"provide students with opportunities to acquire the mathematical
knowledge, skills, and modes of thought needed for daily life and
effective citizenship, to prepare students for occupations that do not
require formal study after graduation, and to prepare students for
postsecondary education, particularly college" [7].

Amongst the many topics covered, the standard expected that
"students have experiences with the concepts and methods of discrete
mathematics," which is defined there as "the study of mathematical
properties of sets and systems that have a countable number of elements."
[8] In contrast with the countable number systems, "the mathematics
curriculum should include the study of mathematical structure so that all
students can compare and contrast the real number system and its various
subsystems with regard to their structural characteristics" [9].

In 2000, the NCTM updated and elaborated on the standard.
"Whereas middle-grades students should have been introduced to
irrational numbers, high school students should develop an understanding
of the system of real numbers. They should understand that given an
origin and a unit of measure, every point on a line corresponds to a real
number and vice versa. They should understand that irrational numbers
can only be approximated by fractions or by terminating or repeating
decimals. They should understand the difference between rational and
irrational numbers. Their understanding of irrational numbers needs to

extend beyond n and V2 " [12].
The formulation of the real number system and the explanation as to

why irrational numbers cannot be exactly computed intrigues students due
to the seeming never-ending computational "power" that computer systems
make available at the touch of a button or click of a mouse. However, it
should be explained to the student that the fundamental difference between
the natural number system and the real number system, between coimtable
sets and uncountable sets, differentiates that which can be represented in
and calculated by a computing device and between those number systems
that cannot. This paper incorporates basic computational data structures to
elucidate this difference. By expressing these mathematical concepts within
the context of computational structures, the discussion in this paper will be
consistent with the NCTM document in that "computers, courseware, and
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manipulative materials are ... used in instruction" [10].
Computability theory models the computational process with

mathematical and logical foundations. The basis for a computational
model is the Church-Turing thesis [4, 16] that states that any algorithm
over the set of natural numbers can be implemented on a ("Turing")
machine. As such, categorizing infinite sets based on their cardinality
plays an intrinsic role in understanding the capabilities and limitations of
computation on modern machines.

In 1895 Cantor [3] introduced the diagonalization method to
determine whether an infinite set is uncountable. An infinite set is
uncountable if there does not exist a 1-1 correspondence between the set
and a subset of the natural numbers. His original proof was applied to the
set of (total) functions over N, the set of natural numbers. (Note: This
paper includes zero as a member of N, based on the axioms of Peano
Arithmetic [17].) Subsequently, the diagonalization method was applied to
different domains, which are not sets of functions. (For example, Atallah
and Fox [1] describe diagonalization as "a proof technique for showing
that a given language does not belong to a given complexity class.") This
resulted in an unclear presentation of how to extend the technique to
further cases. It has reached a point where the notion of "diagonal" has
eroded from these approaches. In this paper. Cantor's original proof is
abstracted by providing a standardized template proof that is readily
available for applications to different infinite set domains. This is
accomplished by requiring a characterizing function to be defined for each
element of the set under consideration.

Examples are presented to illustrate the strengths of the template
proof and to identify the critical points necessary for a valid proof. By
adapting data structure concepts for describing infinite set constructs, we
show within the template proof that countably infinite sets do not provide
enough information for a contradiction in the diagonalization argument. The
template proof thus provides an important educational tool for clarifying
difficult concepts in both mathematical and computability theory.

In the next section, set constructs are analyzed. A proven 1-1
correspondence between N and the set of finite subsets of N suggests a
computer science implementation (data structure) for these sets that is
extended to provide a similar (theoretical) representation for infinite sets. A
template proof is then constructed in Section 3 for standardizing
diagonalization arguments based on Cantor's original proof. Examples are
provided to indicate the care needed in specifying a proper function within
the diagonalization argument in order to yield a valid proof. With this
template, the notion of the "diagonal" is clearly defined. Section 4 provides
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a mathematical formalization to explain why diagonalization arguments do
not succeed when applied to a countable infinite set. Further examples
involving elements of the set of rational numbers are used to indicate subtle
flaws that can invalidate a diagonalization argument; these flaws are elusive
to those learning computability concepts. Based on the above analysis, a
characterization of countable and uncountable sets is discussed (section 5)
that enhances the assertion of the Church-Turing thesis.

2. SET CONSTRUCTS

To analyze the properties of (un)countable sets, the set of (in)finite
subsets of N will be considered. Let set 5 be an unordered collection of
elements. Associated with each set is its membership function,

Mlx,S) = <
^ ^ [O, ifx^S.

While the elements of sets are unordered, theorems about their cardinality
will require an imposed order by putting the elements in a 1-1
correspondence with a subset of the natural numbers.

Consider the finite subsets of N. In this context it is necessary to
determine the elements of Ep the / finite subset of N. The binary
representation of j = bf^bf^_^ • • • i2^^o • The bitstring data structure permits

for the efficient retrieval/storage of a subset of N. Here, M(i,Ej\ = b^,

0<i<k , and M(^i,Ej^ = O , i>k. A chart listing some of these elements

is in Figure 1. A more elaborate example is presented next.

Finite Subset of N

E,

El

£3

E4

E5

Ee

Ej

Elements in Ej

{}
{0}

{1}
{0,1}

{2}
{0,2}

{u}
{0,1, 2}

BIT Representation
^ . . . 4 3 2 1 0

0 . . . 0 0 0 0 0

0 . . . 0 0 0 0 1

0 . . . 0 0 0 1 0

0 . . . 00011

0 . . . 0 0 1 0 0

0 . . . 00101

0 . . . 00110

0. . .00111

n in Base 10

0

1

2

3

4

5

6

7

Figure 1. The bitstring implementation of Ej, t h e / finite subset of N, is the binary
representation of/
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For example, to determine the elements of £50, the binary
representation of 50 is needed: 5O,o = IIOOIO2 = b^bjj^bjb^b^. Since 6,,
64, and 65 are 1, £50= {1,4,5}. This process can easily be reversed. Given
a finite subset of N, the number representing this set can easily be
obtained. For the set {1,2,4}, b^= b2= b^= \ and all other 6 = 0 . The
decimal value of 646362̂ 1,60= 101102= 22,o is therefore the unique natural
number corresponding to the set; in fact, the set will be £22-

This example indicates that a natural number j encodes a finite
subset of N embedded in the binary representation of y. The elements of
this subset are precisely the column indices where the digit 1 appears in
the binary representation of j . An extension of this bitstring construct
allows for a representation of the infinite subsets of N as well; however,
in this case there is no finite A: as a length of the bitstring representation of
the general subset and such that for i> k, M ii, 5^) = 0 .

Og O| O2 ^3

i
A i

{]

{}

^ ^

{0}

V

{1} {0,1} {2} {0,2} {1,2} {0,1,2}
{k:

bic=\}

Figure 2. Visual presentation of the recursive enumeration

of sets (Sfj) maintaining the finite subsets (£.) of N.

An interesting pattern emerges fi-om the table in Figure 1 (above).
The empty set is appropriately the initial subset of N. Then, the set
containing a new element, {0} is unioned with all subsets constructed up
to this point (here, just the empty set so {0} remains). Then, {1} is
unioned with the empty set and the subset {0} to yield {1} and {0, 1}, the
next two subsets in the table. Finally, for this table, the next singleton
subset {2} is unioned with the four previous subsets obtained, yielding
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{2},{0,2},{l,2},{0, 1, 2} as in the table of Figure 1. The significance of
this pattern is that computable functions over countable sets are called
recursive [14]. Here, the above description using bitstrings is not only
constructive but also recursive, as now described.

The recursive enumeration of sets (5^) maintaining the finite
subsets {Ej) of N can be formulated as follows (see Figure 2 for a visual
representation of this):

Base case:
So = {0} =

Recursive step:

where 15^ | is the number of elements in set S^.

In this enumeration (construction), the union operator assumes
ordered sets for its arguments and returns an ordered set. Thus, in the set
S^^^ (the set of all subsets of {0, ..., n}), the elements of S^ appear first,
followed by those elements in the same order but with natural number n
added. Again, E-^ s S^ (they^ finite subset of the recursive enumeration)
contains precisely those elements k that have a bit (bf) set to one in the it*
position of the binary representation of 7. The reader is referred to Figures
1 and 2 to compare the examples of S^ where «=0, l ,2 ,3.

The above construction guarantees the 1-1 correspondence between
N and the finite subsets of N. The significance of this in our discussion is
threefold. First, the bitstring data structure actually provides a practical
implementation of finite sets and can be extended (theoretically) to
"implement" infinitely countable sets. Second, this emphasizes the nature
of a 1-1 correspondence between an infinite set and N in that any infinite
set where an individual element can be uniquely described (encoded) in a
binary string where the last 1 in the encoding appears in a finite position
(as above) is countable by the identical construction above and the fact
that subsets of countable sets are countable (proof outlined in next
paragraph). This is important when trying to categorize the cardinality of
an infinite set. Third, the finite subsets of N are countable (as opposed to the
power set of N, as in Section 3).

For completion, an informal proof that subsets of countably
infinite sets are countable is as follows. Consider 5i = {ay}c52={&}, a
countably infinite set. One can effectively count the elements of 5j by a
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modified count of ^2. Since S2 is countable, there is a 1-1 correspondence

between bj and the natural numbers so that a natural number, which will

be represented by the index j , can uniquely identify each bj. A second

counter variable i will keep the actual count of the elements a, in Sj. The

idea is simply to list the elements of S2 by counting through the natural

numbers, retrieving the element bj of ^2 that corresponds to the particular

natural number just counted, and testing for membership in S^. If that

element is in ^2, then, / is incremented, thus "counting" the elements of

5i. A formal proof of this is given in Orr [13].

The above correspondences were described in this section based on
an effective enumeration of all the elements of a countable set by the use
of the bitstring implementation for the set data structure (adapted to
handle infinite sets). In the next section, diagonalization analysis of
uncountable sets [3] will involve a proof by contradiction that also
requires an effective enumeration of all the elements of the given set.
However, in the uncountable case, the diagonalization argument is used to
prove the nonexistence of such an enumeration. This paradoxical use of
the effective enumeration at times can obfuscate the proper application of
set constructs. Thus, Section 3 will provide a standardized template proof
of diagonalization arguments to enable proper applications of
diagonalization techniques to infinite sets.

3. STANDARDIZATION OF DIAGONALIZATION PROOFS

Cantor [3] introduced the diagonalization method to determine the
uncountability of infinite sets. Consider the set F of functions over the
natural numbers, N. Assume that F is countable. Then, there exists a 1-1
correspondence between F = [fi\fi:N -^N] and N. Construct /„„ such

\h^if^M)m) and/new e F- Cantor used ̂ , ( 0 =m) + \. Since / ( / ^ N
is uniquely defined, the same is true for/^^(0 and hence, fn̂ .̂  is a total
function on N. But, then/n^^e F; hence, f^y,=fic for some k by virtue of
the 1-1 correspondence between F and N. In particular, /new(^)=A(^)-
However, fnev/ik)^fki^) by the construction of f^^ This contradiction
indicates that no natural number k can be found for f^^ e F. Since there
exists an/new( F that cannot be counted, F is not countable.
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/o

/l

fl

/o(O) /o(l) /o(2) ... /o(0

/2(2) ... /2(0

fi

Figure 3. Lookup tables (step 5 below) for the outputs of the characterization functions
with the elements of N as inputs.

Having proved that this set F is not countable, a standard template
consisting of ten steps for applying the diagonalization argument to any
uncountable set now emerges:

1) Theorem. An (uncountable) infinite set Twith elements containing
property P is not countable.

2) Proof by contradiction. Assume that set 7 is countable.
3) By definition of a countable set, there exists a 1-1 correspondence

between the elements of T and N.
4) Construct F, the set of total characterizing functions distinguishing

each element of T. This associates an index / to each characterizing
function f^F corresponding to some t^sT .

5) Construct lookup tables (the rows of Figure 3) for the outputs of
the characterization functions with the elements of N as inputs.
This creates a two-dimensional matrix with the f^F on the
vertical and the natural numbers nsN on the horizontal; the
outputs fi{n) are stored in the matrix cells.

6) Design /^^^ eF such that /new(O^^(O' ^^^ characterizes some
t e T with property P. For any /, f^^(i) differs fi-om the diagonal
element of row / in the matrix of lookup tables.

7) The position (row) k off^^^ in the indexed list of F can be obtained
by the 1-1 correspondence provided for in step 4.

8) Compute/new(^). This equals/^(A:) because of its position on the list
of elements in F. However, fr^^{k)^fi^{k) by the diagonalization
construction in step 6. Thus, an /^^e F has been found which
cannot be counted in the indexed list.

9) The contradiction indicates that a 1-1 correspondence cannot exist
between the elements of F and N.

10) Conclusion: F is not countable; therefore T is not countable.
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Thus, to apply the diagonalization method to any uncountable set T, it is
necessary:

Dl) to define a property P which allows for an element to be a member
of a set, say T; (in the above proof, P=(total) function over N)
D2) to define and count (by indexing) total functions fj that distinguish
(characterize) the elements of T (since the above set F only contains
total functions, these functions^ are automatically defined)
D3) to define q^^e T with property P by designing its characterizing

function /^.^ such that /new(O'!//(O; (/iiew above was shown to be total,
that is it possesses property P since V/, f^^(i)^ N; also, the inequality
condition was provided for

Referring back to the general template diagonalization proof
above, criterion Dl is stated in step 1; criterion D2 is provided for in step
4; criterion D3 is defined in step 6. These three steps are the only parts of
the diagonalization proof template that depend on the specific application
domain. This template clearly demonstrates what this method incorporates
from the "diagonal." The diagonal of the lookup table of characterizing
functions (step 4) is utilized to define f^^, the function that will allow for
the contradiction (step 6). Thus, to prove that a set T containing elements
with property P is not countable, prove that the associated set F of total
characterization functions, distinguishing each element of T, is not
countable.

As mentioned at the end of the previous section, the power set of
N is not countable. To use this template to show that the power set of N is
not countable, the three definitions above (D1-D3) have to be stated.
First, define P as "a subset of N" (criterion Dl). Then, the characterizing
function f, is the infinite bitstring implementation of the membership
function (criterion D2). Finally, the diagonalizing function/new(O is simply
~ / ( 0 (read "NOT/(/)"); the elements of ^^^ are precisely those 7 such
that/new(/) = 1 (criterion D3). The proof can then proceed identically with
the template provided.

This bitstring implementation with its corresponding diagonalizing
function in fact suggests that two other sets are not countable. The
bitstring as an abstract data type implements not only subsets of N, but
also the Boolean predicates on N. Each row of O's and l 's, which in the
previous example represented a subset of N, now represents the outputs of
P,., the I* predicate function (criteria Dl and D2). Criterion D3 is satisfied
identically to the previous example. This set is thus proven not countable
by a similar use of the template proof. Also the bitstring may represent
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the binary representation of the real numbers between 0 and 1.
As stated above, three definitions (D1-D3) are required to make

the template proof problem specific; this enables the diagonalization
method to apply to different set domains. However, the last two (criteria
D2 and D3) are sensitive points in that they provide fertile ground for
creating an invalid proof. Specifically, by enumerating the f (criterion
D2), an order is imposed on the q^. The elements of T must have a 1-1
correspondence with N implying that no element of T is included more
than once nor precluded from the list by the imposed ordering. For
example, for definition Dl , let P be "a real number between 0 and 1."
Since this subset of numbers is uncountable, then so is i?, the set of all
real numbers. But, since fractions with terminating decimals have two
representations, q^^^ could possibly be on the list in an alternative form.

While it is relatively simple to make sure that for /G N ,
/new(O'̂ (̂O. guaranteeing that the corresponding q^^ has property P may
be more difficult (criterion D3). For example, to prove that the
monotonically increasing functions are uncountable, let T be the set of
those functions (criteria Dl and D2). After setting up the matrix as in
figure 2, to ensure that/^ew(O^y;(O, a first attempt f o r ^ ^ might be/^^(O
=ĵ (O + l; but this does not guarantee that/^^ is monotonically increasing.
Therefore, this results in an invalid proof. Defining the diagonalizing
ftinction [15]

will result in /̂ ^^ being monotonically increasing and differing from each
element on the diagonal of the tabie in Figure 2 (D3); this yields a valid
proof. These two examples of uncountable sets emphasize that even when
a valid diagonalization proof exists, a poor choice for f^^ results in an
invalid proof. In the next section, specific cases of countably infinite sets
are utilized to illustrate what can go wrong if the template guidelines are
not strictly adhered to. The flaws in these invalid proofs are elusive to
most students.

4. IMPROPER APPLICATION OF DIAGONALIZATION PROOFS

The previous sections differentiated between the set of finite
subsets of N which are countable, and P(N), the set of all subsets (power
set) of N which is not. Yet, theoretically adapting computer science
constructs of sets (bitstrings), similar characterization functions f are
implemented for elements of both set types. This seems to question the
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validity of the diagonalization method: Can countable infinite sets be
successfully pushed through the template proof? By answering this
question, an insight into diagonalization arguments will surface which will
also shed light on the essential difference between countably infinite and
uncountable sets, and their corresponding cardinalities of N and R.

Suppose an attempt is made to apply the diagonalization template
proof for uncountability to the set of all finite subsets of N, which has
already been proven countable. Then P in step 1 of the template proof is
the "finite subsets of N" (criterion Dl). For step 3, set up the one-to-one
correspondence and the corresponding bitstring implementation shown
before for the finite subsets of N (criterion D2). This means that the order
in the list of functions implies the actual elements of its corresponding set
and that these elements can be identified. This specific order allows for
the fiaw in the proof to be located.

Note that in this case each row in the matrix is the binary
representation of i in reverse order followed by an infinite sequence of
zeroes. This reversal simply follows from the fact that in a number, the
positions of digits are written from most significant (left) to least
significant (right), whereas columns in matrices increase from lowest rank
(left) to highest (right). So, for example the binary representation of 6 is
110 and yet the corresponding set ^g will be stored as Oil -^ 01100000...
in the row of the lookup matrix for/g. This row represents M{j, q^),je N.

Consider step 6 where q^^ is defined by BQB^ ... where B—f^^ii).
Since fi(j) can only be 0 or 1 and f^^^(i) ^ fi(i}, Bi=f^^^{i)^ -fiii) is the
only choice for/„(.„. Then, the proof seems to proceed as normal. The next
theorem indicates the subtle fiaw in this argument. Based on the
characterizing functions for the elements of this countable set, it has been
shown that only a finite amount of information is necessary to distinguish
the elements of this countable (infinite) set; an infinite amount of
information will be needed to distinguish the elements of an uncountable
set. This indicates where the proof fails: There will not be enough
significant information in any given row of the lookup table for a
contradiction to occur at the diagonal element.

Theorem. If 696̂  ... 6^ ... is the infinite bitstring characterization of finite

subset q^ of N in the ordered list, then 6,=0, i>d.

Proof. ^0 represents the empty set and appears as the first element {d=0)
in the ordered list. Its bitstring representation is an infinite string of
zeroes; therefore, 6,=0, V/eN. For all d>0, 2*<rf<2*'̂ ^ for some ke N.
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The number 2^ is the first (least) natural number to require ^+1 bits to
represent it. Similarly, the number 2*"̂ ^ is the first (least) natural number
to require fc+2 bits. Hence, d requires k+\ bits to represent it; let the
binary representation of d=bfjbi^_^ ... b^. A simple argument can be
developed to show that k<2^, k sN; therefore, 2^<d implies that k<d.li
then follows that the associated infinite bitstring representation for d,
represented by bQb^ ... ^ .̂j/?^ ... bj... in the lookup table, contains zeroes
for all other digits b^, i>k. Therefore V/>d, fc,-=O. D

Hence f^^^ =111 ,.., and therefore q^^^ is not a finite subset of N.

5. CONCLUSION

This paper adapts a computer science construct as a means of
explaining mathematical theoretical concepts. In particular, the bitstring
data structure allows for the definition of the membership function for
(in)finite sets. As a result, the inherent difference between countably
infinite and uncountable sets can thus be exhibited. A correct
understanding of this difference permits for the application of the
diagonalization technique to appropriate infinite sets. This also supports
the Church-Turing thesis and enhances its interpretation.

Set T is uncountable when an infinite amount of data is mandatory
to define membership for elements of T. Proofwise this means that the
template proof Cantor's diagonalization is applicable, and a careful choice
of/new will produce a valid proof. It is this infinite storage requirement for
distinguishing the elements of the set that prevents computation on
computing machines, since any procedure that must process an infinite
amount of information will not halt. For example, many real numbers
must have an infinite sequence of digits, and infinite subsets of N must
have an infinite sequence of bits to define the membership function.
Consequently, these two sets, R and P(N), are uncountable and hence,
procedures for computation over these sets are not effectively computable.
See Myhill [5] who shows that, in fact, any radix based representation
(base 2 in this paper) of real numbers will yield simple computations that
to compute even the first digit of the result would require an inspection of
an infinite amount of the operand's digits.

Set T with property P is countable when all (but a finite number
of) te T can be represented by a finite amount of data to define the
elements that have property P. Proof wise this means a 1-1
correspondence does exist between the elements of T and N; the q^^ as
defined in the template proof (step 6) which allows for a contradiction
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cannot be found. Computation over an infinite set in which each element
can be characterized by a finite amount of information is effective over the
entire (countable) set. For example, each member of the finite subsets of
N can be defined with a finite number of bits, and each rational number
can be defined using only two integers; these two sets are thus countable
and hence, by the Church-Turing thesis, algorithms over these sets are
computable.
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